97在线观看视频,夜夜爽妓女8888视频免费观看 ,一边吃奶一边哭乱抻又乱扭 ,大内密探零零性

您好,歡迎進(jìn)入北京樂氏聯(lián)創(chuàng)科技有限公司網(wǎng)站!
一鍵分享網(wǎng)站到:
產(chǎn)品列表

—— PROUCTS LIST

技術(shù)文章Article 當(dāng)前位置:首頁 > 技術(shù)文章 > 高粱籽粒中多酚類物質(zhì)的傅立葉變換近紅外光譜分析

高粱籽粒中多酚類物質(zhì)的傅立葉變換近紅外光譜分析

點擊次數(shù):4690 發(fā)布時間:2013-04-24

  摘要:利用液相色譜(HPLC)法測定高粱籽粒中阿魏酸、原兒茶醛和花青素的含量,比色法測定總酚、總黃酮、縮合單寧的含量;運用偏小二乘法建立NIR光譜與HPLC法和比色法分析值之間的多元校正模型,預(yù)測高粱籽粒中主要酚類物質(zhì)的含量。

1引言

酚類化合物是高粱籽中一種重要的次生代謝物質(zhì),主要有酚酸、類黃酮及縮合單寧(原花青素)[1]。高粱酚類物質(zhì)不僅是一種優(yōu)良的天然抗氧化劑 [2],還具有多種保健功能和藥理作用[3,4]。酚類物質(zhì)的常規(guī)定量檢測方法有化學(xué)測定法和高壓液相色譜法[5]。前者分析精度低,無法測定單一酚類物 質(zhì)含量;后者分析精度較高,但是分析過程復(fù)雜,速度較慢,且對樣品有化學(xué)污染,無法滿足生產(chǎn)過程中在線成分含量監(jiān)控的要求。近紅外光譜技術(shù)是一種快速無損 的分析技術(shù),可以在lmin內(nèi)完成物質(zhì)多組分的檢測[6]。近紅外光譜(NIR)主要是有機(jī)分子的倍頻與合頻吸收光譜,物質(zhì)分子中的CH,NH,OH和 CO等基團(tuán)的基頻振動的倍頻與合頻吸收在近紅外區(qū),因此近紅外技術(shù)比較適合于分析與這些基團(tuán)有直接或間接關(guān)系的成分[7],其突出優(yōu)點是分析速度快、精度 高,穩(wěn)定性好。高粱籽粒中多酚類物質(zhì)都含有的OH,CH,OH,CH2,CHOH及COROH等官能團(tuán),在近紅外光譜區(qū)有明顯的吸收。通過化學(xué)計量學(xué) 的方法建立高粱籽粒多酚類物質(zhì)的近紅外數(shù)學(xué)模型,可快速測定高粱籽粒中多酚類物質(zhì)的含量、降低檢測成本。高粱酚類物質(zhì)近紅外預(yù)測模型在高粱育種和品質(zhì) 分析中具有廣泛的應(yīng)用價值。本實驗采用近紅外光譜分析技術(shù)定量分析高粱籽粒中多酚類物質(zhì)的含量,并建立了高粱中總酚、總黃酮、縮合單寧、阿魏酸、原兒茶 醛、花青素等酚類物質(zhì)含量的數(shù)學(xué)模型,分析精度較高。

2實驗部分

2.1實驗樣品的收集與選擇

實驗材料為山西、遼寧、甘肅、新疆、天津、內(nèi)蒙古等地的33個高粱品種、8個蘇丹草品種及19個高粱蘇丹草雜交品種。所收集材料遺傳源廣、不同材料 間以及籽粒不同部位中單寧含量差異顯著。對60份參試材料種子的不同部位,包括種皮、脫殼籽粒、胚乳、胚以及整粒種子分別進(jìn)行取樣,終形成300份實驗 樣品。樣品經(jīng)粉碎機(jī)(北京六一廠)粉碎,過0.18mm孔徑篩,并經(jīng)CyclotecTM1093型旋風(fēng)磨(Foss公司)二次粉碎,裝入自封袋,常溫避 光保存,待測。

2.2樣品中6種酚類物質(zhì)的測定

參照文獻(xiàn)[8],采用FolinCiocalteu法測定總酚含量,并略加修改;縮合單寧的測定參照文獻(xiàn)[9]的方法進(jìn)行;總黃酮的測定參照文獻(xiàn) [10]的方法并略作修改;使用SHIMADZE10A型液相色譜分析阿魏酸、原兒茶醛和花青素含量,具體步驟參照文獻(xiàn)[11,12]進(jìn)行。

2.3樣品的光譜測定

AntarisTMFT2NIRAnalyzer光譜測定儀器(美國ThermoNicolet公司),漫反射積分球附件,旋轉(zhuǎn)式石英樣品杯(內(nèi)徑 約5cm)。附帶應(yīng)用軟件為:TQAnalystv6,RESULT2Integration,RESULT2Operation。主要工作參數(shù)為:測量 光譜范圍4000~10000cm-1;掃描次數(shù):64;分辨率:8cm-1;增益:2倍;數(shù)據(jù)形式:log(1/R)。圖16個測定樣品的原始光譜圖

Fig.1Originalspectraofsixtestedsamples

采集光譜前儀器預(yù)熱2h。取10~20g高粱籽粒不同部位粉碎樣品盛于直徑50mm的旋轉(zhuǎn)樣品池中,輕輕搖勻,使表面平整,在上述光譜條件下采集樣 品的吸收光譜。為消除樣品粉碎粒度大小、均勻性不一致等因素對光譜的影響,每個樣品重復(fù)掃描3次,每次均掃描背景,計算其平均光譜存于計算機(jī)內(nèi)。圖1為所 測定的6個樣品的傅里葉變換近紅外漫反射光譜圖。

2.4模型的建立與驗證

取280份粉碎樣品組成校正集,另取20份粉碎樣品作為驗證集,在適宜的光譜預(yù)處理基礎(chǔ)上,運用偏小二乘法(PLS)建立NIR光譜多元校正模 型。本實驗結(jié)合多元散射校正(Multiplicativescattercorrection,MSC)和導(dǎo)數(shù)光譜 (Derivativespectra)對NIR光譜進(jìn)行預(yù)處理,用以消除光譜散射效應(yīng)和基線飄移,通過比較不同波數(shù)范圍和光譜預(yù)處理方法對模型的影響, 確立沒食子單寧、原花青素、原兒茶醛、縮合單寧、總黃酮和總酚含量NIR多元校正模型的建模參數(shù),模型初步建立后,通過TQAnalyst提供的 Leverage診斷功能剔除奇異點,應(yīng)用交叉驗證法對模型逐步優(yōu)化,進(jìn)而確定建模的佳主因子數(shù),并以相關(guān)系數(shù)(R)、內(nèi)部交叉驗證均方差 (RMSECV)和校正/預(yù)測均方差(RMSEC/RMSEP)作為定量分析模型性能評價指標(biāo),同時用RSEC和RSEP來考察模型校正和預(yù)測的相對偏 差。

3結(jié)果與討論

3.1樣品的選擇及其化學(xué)分析結(jié)果

本實驗選擇了國內(nèi)廣泛種植的高粱品種、品系共60個,通過種子不同部位取樣,終形成300份樣品,符合所提出的低樣品數(shù)為50個的要求 [13]。表1為儀器測定方法(HPLC法和UV法)所得的6種酚類物質(zhì)在校正集樣品和檢驗集樣品中的分布情況。表1高粱籽樣品中6類酚類物質(zhì)含量測定情 況(mg/g)

3.2模型的優(yōu)化

3.2.1光譜波段的選擇建模波段過寬,必然包含冗余信息,且各成分分子結(jié)構(gòu)存在差異,使得各自對應(yīng)的優(yōu)建模波段并不相同。因此,波段的選擇 有利于提高模型預(yù)測精度。本研究以R和RMSECV值作為評價指標(biāo)(R值越接近1,RMSECV值越小越優(yōu))對建模波段進(jìn)行優(yōu)化,確定6種酚類物質(zhì)各自 佳建模波段,結(jié)果見表2。表2NIR光譜建模優(yōu)波段

Wavenumberrange(cm-1)總酚Totalphenol9570.4~4131.0總黃酮 Totalflavone10000~7501.5縮合單寧Proanthocyanidins6000.6~5200.0阿魏酸 Ferulicacid9003.1~4243.0原兒茶醛Protocatechuicaldehyde9716.1~6001.8花青素 Anthocyanins7007.4~6003.33.2.2光譜數(shù)據(jù)預(yù)處理實現(xiàn)近紅外光譜分析的前提是采用化學(xué)計量學(xué)方法建立光譜特征與待測組分之間 的關(guān)系。高粱籽粉碎樣品近紅外光譜在4000~10000cm-1譜區(qū)內(nèi)有信息含量豐富的吸收,導(dǎo)致其分析難度相當(dāng)大。因此,需采用不同的光譜進(jìn)預(yù)處理方 法來消除近紅外漫反射光譜中的隨機(jī)誤差和某些系統(tǒng)誤差[14]。

在確定建模波段的基礎(chǔ)上,以R和RMSECV為評價指標(biāo),比較NIRS常用的預(yù)處理方法,如多元散射校正(MSC)、標(biāo)準(zhǔn)正態(tài)變量校正(SNV)、 導(dǎo)數(shù)光譜(Derivative)以及2種處理方法相結(jié)合的方法對模型的影響,結(jié)果見表3。由表3可知,對同一組建模樣品集所有待測成分,采用不同的光譜 預(yù)處理方法結(jié)果均比未進(jìn)行光譜處理的結(jié)果好,但不同的光譜預(yù)處理方法之間存在一定的差別,說明不同的光譜預(yù)處理方法對模型的精度有一定的影響。對6個測定 組分,用單一光譜預(yù)處理方法所得模型的R和RMSECV值的差異均較大,預(yù)測效果均不夠;而用多元散射校正與導(dǎo)數(shù)光譜法相結(jié)合或標(biāo)準(zhǔn)正態(tài)變量校正與導(dǎo) 數(shù)光譜法相結(jié)合的方法,R和RMSECV值均得到顯著改善。以多元散射校正與二階導(dǎo)數(shù)光譜法相結(jié)合的方法為優(yōu),所得模型的誤差較小,故終確立以多元散 射校正與二階導(dǎo)數(shù)光譜法相結(jié)合作為預(yù)處理方法。表3不同的光譜預(yù)處理方法對近紅外模型的影響

3.2.3佳建模主因子數(shù)確定建立多元校正模型需確定佳主因子數(shù)。主因子數(shù)太少將導(dǎo)致模型引入的信息量不足,未能充分反應(yīng)被測組分產(chǎn)生的光譜變 化,使模型預(yù)測度降低,出現(xiàn)模型“欠擬合”現(xiàn)象;而主因子數(shù)過多,又會將一些代表噪音的主成分加到模型中,出現(xiàn)模型“過擬合”,同樣導(dǎo)致模型預(yù)測能力 下降[15,16]。本實驗確定的總酚、總黃酮、縮合單寧、阿魏酸、原兒茶醛和花青素6個測定成分佳建模主因子數(shù)分別為4,8,6,6,5和4。

3.3高粱籽中多酚類物質(zhì)近紅外數(shù)學(xué)模型的外部驗證

隨機(jī)抽取20份已知6種酚類物質(zhì)含量的粉碎樣品,組成檢驗集。用已建立的近紅外數(shù)學(xué)模型進(jìn)行外部檢驗,將預(yù)測值與UV測定值和HPLC分析值進(jìn)行比 較,并繪出對應(yīng)關(guān)系圖,結(jié)果見圖2~圖4和表4。NIR光譜預(yù)測值與UV測定值和HPLC分析值之間相關(guān)性良好,6種酚類物質(zhì)的NIR光譜校正模型相關(guān)系 數(shù)R均大于0.97,RSEP控制在8%以內(nèi),預(yù)測回收率在100%~106%之間。以上數(shù)據(jù)說明用近紅外數(shù)學(xué)模型預(yù)測的度接近其它儀器分析方法,并 能夠滿足酚類物質(zhì)生產(chǎn)過程實時分析的精度要求。校正模型確立后,NIR光譜完成1次測量只需30s(掃描32次),可顯著提高分析效率。

4結(jié)論

利用傅里葉變換近紅外透射光譜和偏小二乘法,建立了同時測定高粱籽粒中6種酚類物質(zhì)的方法。校正集樣本的回歸和預(yù)測集樣本的驗證結(jié)果表明,用近紅 外光譜同時測定高粱籽粒中多種酚類物質(zhì)的方法是可行的,結(jié)果。本方法適用于高粱等谷物籽粒多種酚類物質(zhì)同時快速分析。后續(xù)工作應(yīng)收集具有酚類 化合物含量代表性的高粱樣品,以模型的穩(wěn)定性和可靠性。

結(jié)果表明,各成分近紅外預(yù)測值與實測值之間的校正模型相關(guān)系數(shù)(R)、內(nèi)部交叉驗證均方差(RMSECV)、佳主因子數(shù)分別為:總酚 0.9737,0.288,4;總黃酮0.9660,0.00671,8;縮合單寧0.9558,0.0289,6;阿魏酸 0.9818,0.0391,6;原兒茶醛0.9979,0.0118,5;花青素0.9977,0.0523,4;預(yù)測相對偏差(RSEP)分別為:總 酚6.99%、總黃酮4.54%、縮合單寧7.13%、阿魏酸2.68%、原兒茶醛5.46%、花青素5.81%。結(jié)果表明,模型對樣品NIR的預(yù)測值與 其相應(yīng)的化學(xué)值有較好的相關(guān)性,此模型可用來預(yù)測高粱籽粒中的各酚類物質(zhì)的含量,在高粱育種和品質(zhì)分析中具有廣泛的應(yīng)用價值。

版權(quán)所有 © 2024 北京樂氏聯(lián)創(chuàng)科技有限公司

總流量:842696  管理登陸  技術(shù)支持:化工儀器網(wǎng)  GoogleSitemap

ICP備案號:京ICP備06061264號-2